Generalized Wiener filtering for positive alpha-stable random variables Filtrage de Wiener généralisé pour des variables aléatoires positives alpha-stables
نویسندگان
چکیده
This report provides a mathematical proof of a result which is a generalization of Wiener filtering to Positive α-stable (PαS) distributions, a particular subclass of the α-stable distributions family whose support is [0;+∞[. PαS distributions are useful to model nonnegative data and since they are heavy-tailed, they present a natural robustness to outliers. In applications such as nonnegative source separation, it is paramount to have a way of estimating the isolated components that constitute a mixture. To address this issue, we derive an estimator of the sources which is given by the conditional expectation of the sources knowing the mixture. It extends the validity of the generalized Wiener filtering to PαS distributions. This allows us to extract the underlying PαS sources from their mixture.
منابع مشابه
Parametrized Kantorovich-Rubinštein theorem and application to the coupling of random variables Théorème de Kantorovich-Rubinštein avec paramètre et application au couplage des variables aléatoires
We prove a version for randommeasures of the celebrated KantorovichRubinštein duality theorem and we give an application to the coupling of random variables which extends and unifies known results. Résumé Nous démontrons une version du théorème de dualité de KantorovichRubinštein pour les mesures aléatoires, et nous donnons une application au couplage des variables aléatoires qui étend et unifi...
متن کاملParametrized Kantorovich-Rubinštein Theorem and application to the coupling of random variables Théorème de Kantorovitch-Rubinštein avec paramètre et application au couplage des variables aléatoires
We prove a version for randommeasures of the celebrated KantorovichRubinštein duality theorem and we give an application to the coupling of random variables which extends and unifies known results. Résumé Nous démontrons une version du théorème de dualité de KantorovitchRubinštein pour les mesures aléatoires, et nous donnons une application au couplage des variables aléatoires qui étend et unif...
متن کاملAn extension to the Wiener space of the arbitrary functions principle
The arbitrary functions principle says that the fractional part of nX converges stably to an independent random variable uniformly distributed on the unit interval, as soon as the random variable X possesses a density or a characteristic function vanishing at infinity. We prove a similar property for random variables defined on the Wiener space when the stochastic measure dBs is crumpled on its...
متن کاملA General Hsu-robbins-erdös Type Estimate of Tail Probabilities of Sums of Independent Identically Distributed Random Variables Une Estimée Générale De Type Hsu-robbins-erdös Pour Les Probabilités Des Queues Des Sommes Des Variables Aléatoires Indépendantes Et Identiquement Distribuées
Let X1, X2, . . . be a sequence of independent and identically distributed random variables, and put Sn = X1 + · · ·+ Xn. Under some conditions on the positive sequence τn and the positive increasing sequence an, we give necessary and sufficient conditions for the convergence of ∑ ∞ n=1 τnP (|Sn| ≥ εan) for all ε > 0, generalizing Baum and Katz’s (1965) generalization of the Hsu-Robbins-Erdős (...
متن کاملTwo sides tangential filtering decomposition
In this paper, left and two sides tangential filtering decompositions are introduced. The filtering preconditioner constructed by the decomposition is combined with classical ILU(0) preconditioner in multiplicative ways to produce composite preconditioners. Analysis show that the composite preconditioners benefit from each of the preconditioners. On the filtering vector, we reveal that ones is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016